Tag: subtraction

  • The Order of Operations Explained: Exponents, Multiplication and Addition

    The Order of Operations Explained: Exponents, Multiplication and Addition

    This is the 4th in the series The Order of Operations Explained. For the other articles in this series, click here to visit the introduction.

    The Order of Operations can be boiled down into three “real” operations.

    Parenthesis are merely a way to group things – they aren’t a real operation. So they doesn’t count as a real operation.

    Since division is really just multiplication turned upside down, we don’t need to include it separately, either. Likewise, subtraction is addition on its ear. So we throw him out, too.

    Now we have only three: exponents, multiplication and addition.

    Exponents are the shortcut for multiplication.

    In a previous article about remembering exponent rules, I recorded this video about exponents:

    You see that 3 x 3 x 3 x 3 is 34. The exponent is the shortcut for multiplication.

    Multiplication is the shortcut for addition.

    Likewise, when we get overwhelmed with adding up the same numbers over and over, like in the video, 4 + 4 + 4 + 4 + 4, we can use multiplication to shortcut it: 5 x 4.

    Follow the shortcut evolution.

    The shortcut evolution is like this

    1. Addition came first.
    2. Then we created multiplication to make addition easier.
    3. Then we created exponents to make multiplication easier.

    So when you do arithmetic, we should do the “recent” shortcuts first (exponents) and then the “older” shortcuts (multiplication) and then the “regular” arithmetic (addition). Remember that subtraction is addition and division is multiplication.

    And keep in mind that we need to watch the grouping or anything isolated with parenthesis, absolute value bars or in a fraction. The grouping/isolation tools always trump the other operation rules.

    What if your answer isn’t the same as the back of the book?

    Some textbooks actually have multiplication done before division. This means that the problem 9 ÷ 3 x 2 will show a different answer (3/2) in that textbook’s solution pages than what you would get following the OoO I’m describing here (6). These texts are rare, but I’ve seen them. So keep your eyes peeled.

    The Order of Operations is a set of rules that we’ve agreed on. Which means that as long as a textbook clearly defines their order that they will follow, they can do things like this.

    If you get confused as to which to do first, demand parenthesis. (Yes, you can do that.) Or put parenthesis into your child’s textbook to help them out.

    The problem sets should be there to enforce, not confuse.

    What do you think? Does this help or hinder the way you’ve always viewed the Order of Operations? Share your thoughts in the comments.

    Related articles

  • The Order of Operations Explained: Exponents

    The Order of Operations Explained: Exponents

    This is the 3rd in the series The Order of Operations Explained. For the other articles in this series, click here to visit the introduction.

    Exponents are the second in the list for the Order of Operations (OoO).

    When we want to find the result of 32 x (2 + 7), we have no problem. We know to do parenthesis and then exponents, then multiplication.

    When you teach algebra, you’ll have to teach some distributing of exponents. But that’s still okay. And the rules of exponents are pretty straight up.

    So why a whole article on exponents?

    In the order of operations, the “Exponents” rule represents a bunch more than just superscripts or tiny numbers flying up and to the right of things.

    Roots are exponents, too!

    Tree Roots by Linda Allardice

    Not the ones from trees, but things like square roots and cube roots. Consider 9+2\sqrt9 + 2. You do the square root first because it qualified as an “exponent.”

    But if you had 9+2\sqrt{9+2}, the 9 + 2 is under the radical sign (the square root sign) so it’s bound together in the “Parenthesis” rule.

    This one isn’t that hard with arithmetic, but when you come to algebra and start “undoing” these things – it’s important to remember that roots fall into this category.

    Fractional exponents are exponents.

    This one seems pretty “duh” so it’s easy to see how they fall into the “E” of the order of operations. But what are fractional exponents really?

    912 means 99^\frac{1}{2} \text{ means }\sqrt9

    So fractional exponents are the same as roots.

    Note that some fractional exponents are roots and “plain” exponents all mixed up. Like this one:

    2723 means 2723 as well as (273)2.27^\frac{2}{3} \text{ means } \sqrt[3]{27^2} \text{ as well as } (\sqrt[3]{27})^2.

    This is a big fat full concept that needs a little more explaining. I’ll write more on these in another article.

    Logs fall under the E.

    Axe In Stump by caroline steinhauer

    As my algebra and computer math teacher in high school, Mrs. Kelley, used to tell us – logarithms are exponents. It took me a long time to figure out what the heck she meant. But when I did, I thought it was brilliant.

    This is a true statement: log39=2\log_3 9 = 2. Let’s analyze it.

    Based on the definition of logarithms, this means that 32 = 9. Which we know is true.

    Notice who the exponent is in this: 32 = 9: 2 is the exponent. And 2 is the same as log39\log_3 9 because the equals sign in log39=2\log_3 9 = 2 means “is the same as.” So the logarithm log39\log_3 9 is the exponent 2.

    Still with me? Either way, it’s okay. It’s a weird concept that I can go into detail in a video soon.

    The thing to remember here is that logarithms fall into the “Exponents” rule of the order of operations.

    So if you have log39+7\log_3 9 + 7, you have to do the log39\log_3 9 first and then add the 7 after.

    Want more on exponents?

    In the meantime, you can check out more than everything you always wanted to know about exponents on the Wikipedia Exponents page. Rebecca Zook created a great video on logarithms. And check out this explanation and problems to work on fractional exponents.

    And let me know what you think. Did I miss something?

    Related articles
  • Why Learning to Subitize Is Important

    Why Learning to Subitize Is Important

    Previously, I gave a definition and some resources for subitizing – assessing quantity without counting. The questions I posed in the previous article were

    • If you do it, how did you learn to do it?
    • How do we teach children to do it?

    Having thought a great deal about it, I wondered if it was even relevant to teach it. And Husband asked the question, “Don’t they need to count and know their numbers before learning to subitize?”

    You don’t have to learn to count to know “how many.”

    Although evidence indicates that subitizing and counting happen in the same part of the brain, you don’t have to know how to count to subitize.

    Subitizing up to 4 or 5 using recognition bypasses the “counting” of numbers.

    Daughter is currently subitizing 2 – without counting. I haven’t taught her how to count objects at home and they don’t do it at school yet. So she has no concept of one. But “two bows” (one for my hair and one for hers) is very important to her. Likewise “two bowls” (one with goldfish and one with Rice Chex) is an amazing thing.

    This article by Ernst von Glasersfeld explains how number words can be associated with the quantity without ever counting. Children give the appearance of counting because they’ve memorized the number words and they use the cadence to tap their finger on objects. But they’re usually doing this to be rewarded with praises and cheers. They don’t really understand the concept of counting. This is what I saw the little girl doing at the playground.

    It IS important for kids to subitize.

    What’s the point, anyhow? If I can quickly see 8 things  – does it matter? And is it important to tell the difference between 8 things and 9 things? If there are 8 hungry tigers heading for me and I subitize that there are 9, will it make a difference in how fast I run from them?

    I researched more and found out that  subitizing does matter to the understanding of numerical concepts.

    Subitizing 2 items and putting it with a subitzed 3 items can yeild the perceived 5 without ever knowing what addition is. And having the group of 4 items and seeing within it a group of 3 or 2, leads quickly to subtraction and division.

    Thus subitizing “teaches” various mathematical concepts without ever getting into the language or construct that grownups have put on it.

    So how did we learn it?

    My initial guess was that we’ve learned to do it the same way we’ve learned to read without sounding out the words. Over the years we’ve seen and counted many hundreds of bundles of 3 things that when we see another bundle of 3 things, we know there’s 3 of them.

    Upon further research I’m now of the opinion that I learned it from Ma saying to me “there’s three of them” while I looked at a collection of three objects. I bypassed the counting and went straight to learning the cardinality – with the help of grownups.

    The cliffhanger…

    So I’ve yet to answer the question, “How do we teach subitizing?” Alas, it’s coming. (UPDATE: it’s here, complete with downloadables!)

    In the meantime, where do you observe subitizing and does it seem important?

    Related articles

  • The Order of Operations Explained: Parenthesis

    The Order of Operations Explained: Parenthesis

    This is the 2nd in the series The Order of Operations Explained. For the other articles in this series, click here to visit the introduction.

    I mentioned in the introductory article for this series that “the order of operations isn’t best practice for expressions involving variables.”

    When you involve a variable, you can’t just “do” the arithmetic. Like in the case of 2(3x + 4)=11. You can’t add 3x and 4 to get a result before moving on. You have to use the distributive property.

    And even the distributive property won’t work sometimes – as in the case of absolute values shown below.

    Parenthesis mean isolation.

    When we say “parenthesis” in the Order of Operations (OoO for short), we mean anything that’s grouped together and isolated. This could mean with actual parenthesis. This could mean [square brackets] or {curly brackets}.

    Although grownups seem to know that square and curly brackets are the equivalent of parenthesis, children don’t. This has to be said out loud.

    “Parenthesis” in the OoO can also mean |absolute value bars|. This one’s not so clear.

    When you try to solve the equation 4|2x+3|=20, you have to start with dividing by 4 to isolate the absolute value chunk. There’s not a “rule” for distributing the 4.

    (Although, it would be worth it, and fun, to see if your children can come up with some rules for distributing within absolute value bars. This would be some real mathematics at work for them – experimenting and discovering.)

    Tops and bottoms of fractions are implied parenthesis.

    It’s also the case that the numerator (top) and denominator (bottom) of a fraction are isolated places. These fall under the OoO as parenthesis.

    Check out this older video I did. It shows how this works with fractions:

    Parenthesis are for deviation from the other rules.

    David Chandler of Math without Borders commented this in the previous article of this series:

    The rule is to do higher level operations first. Use parentheses whenever your intention is to deviate from this rule.

    If you can focus on this instead of a mnemonic device, you can get students to internalize what’s going on with the OoO. It’s important, however, to make sure they remember about other bracket shapes as well as isolation.

    Let us know your tips and thoughts on the P in PEMDAS!

    Related articles

  • The Order of Operations Explained: Intro and Mnemonics

    The Order of Operations Explained: Intro and Mnemonics

    The Order of Operations (OoO for short) is used everywhere in mathematics because it encompasses many of the foundational rules that we’ve agreed to follow.

    Alas, students have been given the cheap and dirty version of it for years. “Here, memorize this thing about your Dear Aunt Sally!” What the heck?!

    There are subtleties in the Order of Operations that every person over the age of seven should know.

    The series begins today.

    The order of operations is a set of rules – like the drivers’ handbook for math. If everyone follows the rules, we’ll all be safe. But if someone makes a bad turn, we could be looking at a crash.

    But the Order of Operations is only a set of rules for arithmetic! It isn’t even the best practice when it comes to expressions involving a variable like x. I’ll cover what I mean in this weekly series.

    Here are the proposed articles:

    1. Intro and mnemonics
    2. Parenthesis
    3. Exponents
    4. Exponents, Multiplication and Addition
    5. Multiplication and Division
    6. Addition, Subtraction and Conclusions
    7. Exponents of Negative Numbers
    8. Another Reason to Ban PEMDAS (aka parenthesis aren’t an operation)

    Mnemonics for PEMDAS

    Well, there’s one: PEMDAS (pronounced just like it looks). That’s what the cool kids in high school always said. It was the same kids who said “soh-cah-toa” – which I thought sounded really goofy.

    And then there’s “Please Excuse My Dear Aunt Sally.” And of course “Piranhas Eat Mostly Decayed Antelope Skin.”

    What’s your way to remember it?

  • Teaching Subtraction Using a Balance

    Teaching Subtraction Using a Balance

    I love finding nifty ways to use tools for teaching math. Especially tools that aren’t supposed to teach math. Or at least the math I’m trying to get it to teach.

    I have this very cool balance that I got from Discovery Toys that would normally be a science toy. But, alas, I’m a mathematician, Jim, not a doctor. So I’ve taken the fancy science toy and turned it into a way to teach subtraction.

    You can, of course, use it to teach addition and later I’ll do a post on using it to teach multiplication and division.

    If you have children who struggle with math concepts, teaching them with hands on bits (manipulatives) sometimes helps. Here’s how to teach subtraction using a balance:

    This nifty trick can be done with any balance as long as you have weights appropriately sized. Sometimes that’s not so easy to find. Order a colorful balance that’s similar to the Discovery Toys one in video here.

    Did it work? How did your children receive this method of learning arithmetic? Please share your experience with it in the comments!

  • Two Reasons to Memorize Math Facts

    Two Reasons to Memorize Math Facts

    I learned my math facts by “singing” them while looking at flashcards.

    Having these facts ingrained with chanting or singing isn’t a bad idea. It might not “feel right” because we’re so into experiential learning these days. But if a kid can’t immediately access and use things like 8 x 7 = 56, he’s going to be slower than if he can.

    And if he’s slower, he might get frustrated and start to think that he’s not good at math.

    Also, knowing these cheap and dirty math facts helps with confidence. Even if a kid’s struggling with other things in math, knowing that he has this one thing (the “facts”) will help out.

    I fight this battle often. Some people feel that math facts shouldn’t be memorized. But there’s so much value in it.

    How about you? Which side of the fence are you on?

  • How to Subtract Using Reverse Addition

    How to Subtract Using Reverse Addition

    This was requested by Jake’s Mom. Since she was taught to borrow, she was dumfounded at what Jake brought home. Happily, Jake is young enough and unscathed enough to not balk at a “different” method than what his mom was taught. He got it right away.

    But Jake’s mom, on the other hand, is struggling.

    If your kiddo is being taught this, here’s a way to look at it that might help you understand what’s going on.

    First, a brief review on the relationship of subtraction to addition:

    Here’s what “reverse addition” looks like in relation to our old friend “borrowing,” using the same example:

    And here’s an example:

    Another example (along with a special tip for you):

    And a final example, just to help you get the hang of it.

    Still have questions? Post them in the comments.

    Thanks, Jake’s Mom, for the question!